24 research outputs found

    Fixed point results for generalized cyclic contraction mappings in partial metric spaces

    Full text link
    Rus (Approx. Convexity 3:171–178, 2005) introduced the concept of cyclic contraction mapping. P˘acurar and Rus (Nonlinear Anal. 72:1181–1187, 2010) proved some fixed point results for cyclic φ-contraction mappings on a metric space. Karapinar (Appl. Math. Lett. 24:822–825, 2011) obtained a unique fixed point of cyclic weak φ- contraction mappings and studied well-posedness problem for such mappings. On the other hand, Matthews (Ann. New York Acad. Sci. 728:183–197, 1994) introduced the concept of a partial metric as a part of the study of denotational semantics of dataflow networks. He gave a modified version of the Banach contraction principle, more suitable in this context. In this paper, we initiate the study of fixed points of generalized cyclic contraction in the framework of partial metric spaces. We also present some examples to validate our results.S. Romaguera acknowledges the support of the Ministry of Science and Innovation of Spain, grant MTM2009-12872-C02-01.Abbas, M.; Nazir, T.; Romaguera Bonilla, S. (2012). Fixed point results for generalized cyclic contraction mappings in partial metric spaces. Revista- Real Academia de Ciencias Exactas Fisicas Y Naturales Serie a Matematicas. 106(2):287-297. https://doi.org/10.1007/s13398-011-0051-5S2872971062Abdeljawad T., Karapinar E., Tas K.: Existence and uniqueness of a common fixed point on partial metric spaces. Appl. Math. Lett. 24(11), 1894–1899 (2011). doi: 10.1016/j.aml.2011.5.014Altun, I., Erduran A.: Fixed point theorems for monotone mappings on partial metric spaces. Fixed Point Theory Appl. article ID 508730 (2011). doi: 10.1155/2011/508730Altun I., Sadarangani K.: Corrigendum to “Generalized contractions on partial metric spaces” [Topology Appl. 157 (2010), 2778–2785]. Topol. Appl. 158, 1738–1740 (2011)Altun I., Simsek H.: Some fixed point theorems on dualistic partial metric spaces. J. Adv. Math. Stud. 1, 1–8 (2008)Altun I., Sola F., Simsek H.: Generalized contractions on partial metric spaces. Topol. Appl. 157, 2778–2785 (2010)Aydi, H.: Some fixed point results in ordered partial metric spaces. arxiv:1103.3680v1 [math.GN](2011)Boyd D.W., Wong J.S.W.: On nonlinear contractions. Proc. Am. Math. Soc. 20, 458–464 (1969)Bukatin M., Kopperman R., Matthews S., Pajoohesh H.: Partial metric spaces. Am. Math. Monthly 116, 708–718 (2009)Bukatin M.A., Shorina S.Yu. et al.: Partial metrics and co-continuous valuations. In: Nivat, M. (eds) Foundations of software science and computation structure Lecture notes in computer science vol 1378., pp. 125–139. Springer, Berlin (1998)Derafshpour M., Rezapour S., Shahzad N.: On the existence of best proximity points of cyclic contractions. Adv. Dyn. Syst. Appl. 6, 33–40 (2011)Heckmann R.: Approximation of metric spaces by partial metric spaces. Appl. Cat. Struct. 7, 71–83 (1999)Karapinar E.: Fixed point theory for cyclic weak ϕ{\phi} -contraction. App. Math. Lett. 24, 822–825 (2011)Karapinar, E.: Generalizations of Caristi Kirk’s theorem on partial metric spaces. Fixed Point Theory Appl. 2011,4 (2011). doi: 10.1186/1687-1812-2011-4Karapinar E.: Weak φ{\varphi} -contraction on partial metric spaces and existence of fixed points in partially ordered sets. Math. Aeterna. 1(4), 237–244 (2011)Karapinar E., Erhan I.M.: Fixed point theorems for operators on partial metric spaces. Appl. Math. Lett. 24, 1894–1899 (2011)Karpagam S., Agrawal S.: Best proximity point theorems for cyclic orbital Meir–Keeler contraction maps. Nonlinear Anal. 74, 1040–1046 (2011)Kirk W.A., Srinavasan P.S., Veeramani P.: Fixed points for mapping satisfying cylical contractive conditions. Fixed Point Theory. 4, 79–89 (2003)Kosuru, G.S.R., Veeramani, P.: Cyclic contractions and best proximity pair theorems). arXiv:1012.1434v2 [math.FA] 29 May (2011)Matthews S.G.: Partial metric topology. in: Proc. 8th Summer Conference on General Topology and Applications. Ann. New York Acad. Sci. 728, 183–197 (1994)Neammanee K., Kaewkhao A.: Fixed points and best proximity points for multi-valued mapping satisfying cyclical condition. Int. J. Math. Sci. Appl. 1, 9 (2011)Oltra S., Valero O.: Banach’s fixed theorem for partial metric spaces. Rend. Istit. Mat. Univ. Trieste. 36, 17–26 (2004)Păcurar M., Rus I.A.: Fixed point theory for cyclic ϕ{\phi} -contractions. Nonlinear Anal. 72, 1181–1187 (2010)Petric M.A.: Best proximity point theorems for weak cyclic Kannan contractions. Filomat. 25, 145–154 (2011)Romaguera, S.: A Kirk type characterization of completeness for partial metric spaces. Fixed Point Theory Appl. (2010, article ID 493298, 6 pages).Romaguera, S.: Fixed point theorems for generalized contractions on partial metric spaces. Topol. Appl. (2011). doi: 10.1016/j.topol.2011.08.026Romaguera S., Valero O.: A quantitative computational model for complete partial metric spaces via formal balls. Math. Struct. Comput. Sci. 19, 541–563 (2009)Rus, I.A.: Cyclic representations and fixed points. Annals of the Tiberiu Popoviciu Seminar of Functional equations. Approx. Convexity 3, 171–178 (2005), ISSN 1584-4536Schellekens M.P.: The correspondence between partial metrics and semivaluations. Theoret. Comput. Sci. 315, 135–149 (2004)Valero O.: On Banach fixed point theorems for partial metric spaces. Appl. Gen. Top. 6, 229–240 (2005)Waszkiewicz P.: Quantitative continuous domains. Appl. Cat. Struct. 11, 41–67 (2003

    Cauchy approximation for sums of independent random variables

    No full text
    We use Stein's method to find a bound for Cauchy approximation. The random variables which are considered need to be independent

    A refinement of normal approximation to Poisson binomial

    No full text
    Let X1,X2,…,Xn be independent Bernoulli random variables with P(Xj=1)=1−P(Xj=0)=pj and let Sn:=X1+X2+⋯+Xn. Sn is called a Poisson binomial random variable and it is well known that the distribution of a Poisson binomial random variable can be approximated by the standard normal distribution. In this paper, we use Taylor's formula to improve the approximation by adding some correction terms. Our result is better than before and is of order 1/n in the case p1=p2=⋯=pn

    On the constant in the nonuniform version of the Berry-Esseen theorem

    No full text
    In 2001, Chen and Shao gave the nonuniform estimation of the rate of convergence in Berry-Esseen theorem for independent random variables via Stein-Chen-Shao method. The aim of this paper is to obtain a constant in Chen-Shao theorem, where the random variables are not necessarily identically distributed and the existence of their third moments are not assumed. The bound is given in terms of truncated moments and the constant obtained is 21.44 for most values. We use a technique called Stein's method, in particular the Chen-Shao concentration inequality
    corecore